Coordination between Motor Domains in Processive Kinesins

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction between motor domains can explain the complex dynamics of heterodimeric kinesins.

Motor proteins are active enzyme molecules that play a crucial role in many biological processes. They transform chemical energy into mechanical work and move unidirectionally along rigid cytoskeleton filaments. Single-molecule experiments indicate that motor proteins, consisting of two motor domains, move in a hand-over-hand mechanism where each subunit changes between trailing and leading pos...

متن کامل

Processive kinesins require loose mechanical coupling for efficient collective motility.

Processive motor proteins are stochastic steppers that perform actual mechanical steps for only a minor fraction of the time they are bound to the filament track. Motors usually work in teams and therefore the question arises whether the stochasticity of stepping can cause mutual interference when motors are mechanically coupled. We used biocompatible surfaces to immobilize processive kinesin-1...

متن کامل

Dissection of Kinesin's Processivity

The protein family of kinesins contains processive motor proteins that move stepwise along microtubules. This mechanism requires the precise coupling of the catalytic steps in the two heads, and their precise mechanical coordination. Here we show that these functionalities can be uncoupled in chimera of processive and non-processive kinesins. A chimera with the motor domain of Kinesin-1 and the...

متن کامل

The two motor domains of KIF3A/B coordinate for processive motility and move at different speeds.

KIF3A/B, a kinesin involved in intraflagellar transport and Golgi trafficking, is distinctive because it contains two nonidentical motor domains. Our hypothesis is that the two heads have distinct functional properties, which are tuned to maximize the performance of the wild-type heterodimer. To test this, we investigated the motility of wild-type KIF3A/B heterodimer and chimaeric KIF3A/A and K...

متن کامل

Non-catalytic motor domains enable processive movement and functional diversification of the kinesin-14 Kar3

Motor proteins of the conserved kinesin-14 family have important roles in mitotic spindle organization and chromosome segregation. Previous studies have indicated that kinesin-14 motors are non-processive enzymes, working in the context of multi-motor ensembles that collectively organize microtubule networks. In this study, we show that the yeast kinesin-14 Kar3 generates processive movement as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Biological Chemistry

سال: 2004

ISSN: 0021-9258

DOI: 10.1074/jbc.r300036200